3/03/2017

improve ANN a little

Today,  I checked all the data of 6 parameters. I found that there are some very strange numbers. They are either very large (more than 1000 times higher than the mean value) or very small (negatively large). So I deleted them ( 13 in total). And build a slightly better ann model.

Summary:

The following are 6 parameters' summaries after deleting strange numbers.

> summary(betachange3$P1)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
0.0000000 0.0006518 0.0013720 0.0015680 0.0021490 0.0204000 
 
> summary(betachange3$P2)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-98.010   5.283  12.250  13.450  20.900  46.640 
 
> summary(betachange3$P3)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 -9.448   2.174   3.447   3.539   4.808  39.760 
 
> summary(betachange3$P4)
      Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
-0.0001874  0.0007157  0.0012470  0.0016700  0.0021710  0.0113300 
 
> summary(betachange3$P5)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.479  35.100  42.320  40.240  47.710  76.590 
 
> summary(betachange3$P6)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 -2.535   1.875   2.513   3.056   3.706  19.050 




The first are the comparisons of outputs and targets.
The second is all the 3042 predicted outputs (red) and original targets (blue).
The third is the first 500 pairs.
Although it is not very accurate, it improves a lot compared with the original models.

Next week, I will continue to improve them by other ways.

2 comments:

  1. not great so far....

    when you present your data remove positive and negative spikes... so that other results can be compared with good resolution..

    another way to present the data is on logscale in yaxis

    ReplyDelete
  2. yes, it may be a good idea. i will try it today.

    ReplyDelete